ON THE THEORY OF THE NORMAL COMBUSTION VELOCITY

(K TEORII NOBMAL'NOI SKOROSII CORENIIA)

PMM Vol.29, 4 , 1965, pp.794-795

G.P.Cherepanov
 (Moscow)

(Received March 30, 1964)

The normal velocity of homogeneous stationary combustion which is a physicochemical constant of a mixture, is determined from the solution of the system of equations [1]

$$
\begin{gather*}
m \frac{d u}{d \xi}-\frac{d^{2} u}{d \xi^{2}}=\Phi(u) c, \quad m \frac{d c}{d \xi}-\lambda \frac{d^{2} c}{d \xi^{2}}=-\Phi(u) c \tag{1}\\
(-\infty<\xi \gtrless \infty)
\end{gather*}
$$

satisfying the boundary conditions

$$
\begin{gather*}
u(-\infty)=u_{-}, \quad u(+\infty)=u_{+} \quad\left(u_{-}<u_{\varepsilon}, u_{+}>u_{\varepsilon}\right) \\
c(-\infty)=v_{-}, \quad c(+\infty)=0 \quad\left(v_{-}>0, m>0\right) \tag{2}\\
\Phi(u)=0 \quad \text { for } \quad u<u_{\varepsilon}, \quad \Phi(u)>0 \quad \text { for } \quad u>u_{\varepsilon} ; \lambda=D \text { 个ค/k }
\end{gather*}
$$

Here m is the normal combustion velocity; u the mixture temperature; c the concentration of active material; $\quad \Phi(u)$ the monomolecular reaction rate; D the diffusion coefficient; p the density of the material; r its specific heat; k the coefficient of heat conduction.

For $\lambda=1$ the solution of the problem has been obtained by zel'dovich [1]. Kanel' [2] proved the existence of the solution for all λ and the uniqueness of the solution for $0<\lambda<1$. Novikov and Riazantsev [3] investigated the problem in the singular case $\lambda=0$. An exact anaiytical solution of the problem (1), (2) is found below.

It is easy to reduce the original problem (1), (2) to the following. Required to find a number α from the boundary value problem on the segment $[0,1]$
$\frac{d z}{d t}=-1+\alpha f(t) \frac{v}{z}, \quad \lambda \frac{d v}{d t}=1+\frac{t-v}{z}, \quad \begin{array}{ll}z=0, & v=0 \quad \text { for } \quad t=0 \\ z=a & \text { for } t=1 \quad(a>0)\end{array}$
Here

$$
f(t)=\Phi(u), \quad f(t)=0 \quad \text { for } \quad t=1, \quad f(t)>0 \quad \text { on }[0,1)
$$

$v=\frac{c}{u_{+}-u_{e}}, \quad z=\frac{m^{-1}}{u_{+}-u_{\varepsilon}} \frac{d u}{d \xi}, \quad t=\frac{u_{+}-u}{u_{+}-u_{\varepsilon}}, \quad a=\frac{u_{\varepsilon}-u_{-}}{u_{1}-u_{z}}, \quad \alpha=\frac{1}{m^{2}}$
Let us find the solution of the problem (3) by conaidering that the function $f(t)$ may be represented by a Taylor series whose range of convergence is greater than unity

$$
\begin{equation*}
f(t)=\sum_{n=0}^{\infty} f_{n} t^{n} \tag{4}
\end{equation*}
$$

In partioular this may be simply a polynomial approximating the experimental curve $f(t)$.

Let us first consider the Cauchy problem for (3) with Cauchy data at $t=0$ by considering a known. Let us seek the solution of the cauahy problem in the form

$$
\begin{equation*}
z=\sum_{n=1}^{\infty} z_{n} t^{n}, \quad v=\sum_{n=1}^{\infty} v_{n} t^{n} \tag{5}
\end{equation*}
$$

Substituting the functions z and v according to (5) and (3) and equating coefficients of like powers of t to zero we obtain an infinite system of algebraic equations for z_{z} and v_{2}. The first two equations of the system contain only s_{1} and v_{1}. There exist three solutions of these equations, of which one is posicive, and two negative. Only the positive solution has physical meaning

$$
\begin{equation*}
z_{1}=\left(\frac{1}{4 \lambda^{2}}+\alpha \frac{f_{0}}{\lambda}\right)^{1} 3-\frac{1}{2 \lambda}, \quad v_{1}=\frac{1 \not-z_{1}}{1-\cdots z_{1}} \tag{6}
\end{equation*}
$$

The resaining equations of the infinite system are inear in the undnowns $z_{\text {a }}$ and v_{n}. The solution of the system is expressed by the following recur sion formilas:

$$
\begin{gather*}
z_{2}=\alpha \frac{f_{1} \eta_{1}\left(2 \lambda z_{1}+1\right)}{\Delta_{2}}, \quad v_{2}=-\alpha \frac{f_{1} v_{1}\left(\lambda v_{1}-1\right)}{\Delta_{2}} \\
\Delta_{2}=\left(1+3 z_{1}\right)\left(1+2 \lambda z_{1}\right) \cdot!(\lambda-1) z_{1} \tag{7}
\end{gather*}
$$

$$
\begin{gathered}
z_{n}=\frac{\left(1+n \lambda z_{1}\right) B_{n}-\alpha f_{0} A_{n}}{\Delta_{n}}, \quad v_{n}=-\frac{\left[1+(n-1) z_{1}\right] A_{n}+\left(\lambda v_{1}-1\right) B_{n}}{\Delta_{n}} \\
\Delta_{n}=\left[1+(n+1) z_{1}\right]\left(1+n \lambda z_{1}\right)+(\lambda-1) z_{1} \\
A_{n}=2 \lambda v_{2} z_{n-1}-3 \lambda v_{3} z_{n-2}+\ldots+(n-1) \lambda v_{n-1} z_{2} \\
B_{n}=\alpha\left(f_{1} v_{n-1}+f_{2} v_{n-2}+\ldots+f_{n-1} v_{1}\right)-2 z_{2} z_{n-1}-3 z_{3} z_{n-2}-\ldots-(n-1) z_{n-1} z_{2}
\end{gathered}
$$

It an be shown that if the rance of convergence of the series (4) for the function $f(t)$ is greater than unity, then the radius of comperymee of the serles (5), fielding the solution of the Oquatry problem, will siso be preater than unity. As is seen from the molution (5) to (7), the functions and v are analytic functions of the variable t and the parameter α.

Knowing the solution of the Cauchy problem for arbitraxy α, the velue of a correaponding to the bounding candition (3) at $t=1$ should be deflued as the positive root of Equation

$$
\begin{equation*}
\sum_{n-1}^{\infty} z_{n}(\alpha)=a \tag{8}
\end{equation*}
$$

In partioular, the following theorem results from the exposition:
Theorem. The number of solutions of the original boundary value problem (3) equals the number of zeros of the function

$$
\psi(x)-\sum_{n=1}^{\infty} z_{n}(x)-a
$$

located on the positive. real semiaxis ($z_{\mathrm{a}}(\mathrm{a})$ are defined by (7)).
It is easy to see that the function $p(\alpha)$ alwars has at least one zero on the real positive semiaris, since, according to (7), it increases monotonousiy for large a and taloes the value $-a$ for $a=0$.

The author is grateful to R.D.Beahelis and V.G.Neland for ueeful disoussions.

BIBHIOARAPHI

1. Zel'dovich, Ia.B., K teoril rasprostrenenila plameni (On the theory of flame propagation). Zh.f1z.Nhim, Vo1.22, vi, p.27, 1948.
 gorenila (On the stetlonery solution for a syater of equetions of combustion theory). Dokl. Nad. Vauk S8er, Vol.149, N 2, 163.
2. Hovikov, S.3. and fiasantsev, Iu.8., K teorii gorenila kondenimpovanmich sister (on the theory of combuation of condented syeteme). Doki .Alcid. Nauk SssR, Vol.157, ie 6, 1964.
